Code
df_attacks = attacks.loc[attacks["to_journalist"].isin([USERNAME])]
print(f"Número de ataques: {len(df_attacks)}")Número de ataques: 427
Fernanda Aguirre
January 16, 2024
Proporción de ataques = (Número de ataques / Número de menciones) * 100
journalist_mentions = len(df.loc[df["to_journalist"].isin([USERNAME])])
journalist_attacks = len(df_attacks)
percentage_attacks = (journalist_attacks / journalist_mentions) * 100
proportion = (percentage_attacks / 100) * 10
proportion_rounded = round(proportion, 1)
print(
    f"Aproximadamente {proportion_rounded} de cada 10 publicaciones que mencionan a {USERNAME} son ataques"
)Aproximadamente 0.9 de cada 10 publicaciones que mencionan a @Cris_noticias son ataques
Proporción de ataques por seguidor = Número de ataques / Número de seguidores
Por cada 1K seguidores, aproximadamente hubo 0.44 ataques para @Cris_noticias
women         218
politics      115
appearance     80
racism         21
class          13
lgbti           3
calls           2
criminal        0
dtype: int64
journalist_posts = df.loc[df["from_journalist"].isin([USERNAME])]
journalist_posts = journalist_posts.dropna(subset=["from_journalist"])
eventos = [
    "1er debate",
    "2do debate",
    "elecciones generales",
    "debate balotaje",
    "elecciones balotaje",
]
colors = ["green", "purple", "orange", "red", "blue"]
eventos_count = {}
fig = px.line()
for i, evento in enumerate(eventos):
    evento_data = journalist_posts.loc[journalist_posts["event"].isin([evento])]
    evento_count = evento_data.groupby("dt_date").size().reset_index(name="count")
    eventos_count[evento] = evento_count
    fig.add_scatter(
        x=evento_count["dt_date"],
        y=evento_count["count"],
        name=evento,
        line=dict(color=colors[i]),
        hovertemplate="posts: %{y}",
    )
fig.update_layout(title=f"Publicaciones de {USERNAME}", width=1000)
fig.update_xaxes(type="category")
fig.update_yaxes(range=[0, 100])
fig.show()df_attacks["hashtags"] = df_attacks["text"].apply(
    lambda x: (
        np.nan
        if pd.isnull(x) or not isinstance(x, str) or len(re.findall(r"#\w+", x)) == 0
        else re.findall(r"#\w+", x)
    )
)
df_attacks["hashtags"] = df_attacks["hashtags"].apply(
    lambda x: ", ".join(x) if isinstance(x, list) else x
)
# convert dataframe column to list
hashtags = df_attacks["hashtags"].unique()
# remove nan items from list
hashtags = [x for x in hashtags if not pd.isna(x)]
# split items into a list based on a delimiter
hashtags = [x.split(",") for x in hashtags]
# flatten list of lists
hashtags = [item for sublist in hashtags for item in sublist]
# remove whitespaces
hashtags = list(map(lambda x: x.replace(" ", ""), hashtags))
# count items on list
hashtags_count = pd.Series(hashtags).value_counts()
hashtags_count#nuncamas               1
#PalestinaLibre         1
#YoVotoAMassa           1
#Milei                  1
#NuncaMilei             1
#MassaPresidente2023    1
#NuncaMas               1
#MileiNo                1
Name: count, dtype: int64
df_attacks["mentions"] = df_attacks["text"].apply(
    lambda x: (
        np.nan
        if pd.isnull(x) or not isinstance(x, str) or len(re.findall(r"@(\w+)", x)) == 0
        else re.findall(r"@(\w+)", x)
    )
)
df_attacks["mentions"] = df_attacks["mentions"].apply(
    lambda x: ", ".join(x) if isinstance(x, list) else x
)
# convert dataframe column to list
mentions = df_attacks["mentions"].unique()
# remove nan items from list
mentions = [x for x in mentions if not pd.isna(x)]
# split items into a list based on a delimiter
mentions = [x.split(",") for x in mentions]
# flatten list of lists
mentions = [item for sublist in mentions for item in sublist]
# remove whitespaces
mentions = list(map(lambda x: x.replace(" ", ""), mentions))
# count items on list
mentions_count = pd.Series(mentions).value_counts()
mentions_countCris_noticias      2
myriambregman      1
SergioMassa        1
JMilei             1
PatoBullrich       1
luispetri          1
JorgeTelerman      1
horaciorlarreta    1
Name: count, dtype: int64
# load the spacy model for Spanish
nlp = spacy.load("es_core_news_sm")
# load stop words for Spanish
STOP_WORDS = nlp.Defaults.stop_words
# Function to filter stop words
def filter_stopwords(text):
    # lower text
    doc = nlp(text.lower())
    # filter tokens
    tokens = [
        token.text
        for token in doc
        if not token.is_stop and token.text not in STOP_WORDS and token.is_alpha
    ]
    return " ".join(tokens)
# apply function to dataframe column
df_attacks["text_pre"] = df_attacks["text"].apply(filter_stopwords)
# count items on column
token_counts = df_attacks["text_pre"].str.split(expand=True).stack().value_counts()[:20]
token_countsvos          43
sos          38
gorila       34
q            32
marido       30
novio        25
botox        23
vieja        19
mierda       19
cara         17
milei        16
gente        16
vas          15
zurdos       15
tenes        14
dictadura    10
x            10
orto         10
anda          9
massa         9
Name: count, dtype: int64