Code
df_attacks = attacks.loc[attacks["to_journalist"].isin([USERNAME])]
print(f"Número de ataques: {len(df_attacks)}")Número de ataques: 421
Fernanda Aguirre
January 16, 2024
Proporción de ataques = (Número de ataques / Número de menciones) * 100
journalist_mentions = len(df.loc[df["to_journalist"].isin([USERNAME])])
journalist_attacks = len(df_attacks)
percentage_attacks = (journalist_attacks / journalist_mentions) * 100
proportion = (percentage_attacks / 100) * 10
proportion_rounded = round(proportion, 1)
print(
    f"Aproximadamente {proportion_rounded} de cada 10 publicaciones que mencionan a {USERNAME} son ataques"
)Aproximadamente 1.6 de cada 10 publicaciones que mencionan a @JonatanViale son ataques
Proporción de ataques por seguidor = Número de ataques / Número de seguidores
Por cada 1K seguidores, aproximadamente hubo 0.43 ataques para @JonatanViale
appearance    258
women          97
politics       41
racism         22
class           7
criminal        7
lgbti           6
calls           4
dtype: int64
journalist_posts = df.loc[df["from_journalist"].isin([USERNAME])]
journalist_posts = journalist_posts.dropna(subset=["from_journalist"])
eventos = [
    "1er debate",
    "2do debate",
    "elecciones generales",
    "debate balotaje",
    "elecciones balotaje",
]
colors = ["green", "purple", "orange", "red", "blue"]
eventos_count = {}
fig = px.line()
for i, evento in enumerate(eventos):
    evento_data = journalist_posts.loc[journalist_posts["event"].isin([evento])]
    evento_count = evento_data.groupby("dt_date").size().reset_index(name="count")
    eventos_count[evento] = evento_count
    fig.add_scatter(
        x=evento_count["dt_date"],
        y=evento_count["count"],
        name=evento,
        line=dict(color=colors[i]),
        hovertemplate="posts: %{y}",
    )
fig.update_layout(title=f"Publicaciones de {USERNAME}", width=1000)
fig.update_xaxes(type="category")
fig.update_yaxes(range=[0, 100])
fig.show()df_attacks["hashtags"] = df_attacks["text"].apply(
    lambda x: (
        np.nan
        if pd.isnull(x) or not isinstance(x, str) or len(re.findall(r"#\w+", x)) == 0
        else re.findall(r"#\w+", x)
    )
)
df_attacks["hashtags"] = df_attacks["hashtags"].apply(
    lambda x: ", ".join(x) if isinstance(x, list) else x
)
# convert dataframe column to list
hashtags = df_attacks["hashtags"].unique()
# remove nan items from list
hashtags = [x for x in hashtags if not pd.isna(x)]
# split items into a list based on a delimiter
hashtags = [x.split(",") for x in hashtags]
# flatten list of lists
hashtags = [item for sublist in hashtags for item in sublist]
# remove whitespaces
hashtags = list(map(lambda x: x.replace(" ", ""), hashtags))
# count items on list
hashtags_count = pd.Series(hashtags).value_counts()
hashtags_count#SeVanParaSiempre         1
#MemoriaAlVotar           1
#EsCorrupciónOJusticia    1
#MassaPresidente          1
#LaLibertadTransa         1
#MassaPresidente2023      1
#NoAMilei                 1
#GORDITOLECHOSO           1
#Gorditolechoso           1
#Periodistaensobrado      1
Name: count, dtype: int64
df_attacks["mentions"] = df_attacks["text"].apply(
    lambda x: (
        np.nan
        if pd.isnull(x) or not isinstance(x, str) or len(re.findall(r"@(\w+)", x)) == 0
        else re.findall(r"@(\w+)", x)
    )
)
df_attacks["mentions"] = df_attacks["mentions"].apply(
    lambda x: ", ".join(x) if isinstance(x, list) else x
)
# convert dataframe column to list
mentions = df_attacks["mentions"].unique()
# remove nan items from list
mentions = [x for x in mentions if not pd.isna(x)]
# split items into a list based on a delimiter
mentions = [x.split(",") for x in mentions]
# flatten list of lists
mentions = [item for sublist in mentions for item in sublist]
# remove whitespaces
mentions = list(map(lambda x: x.replace(" ", ""), mentions))
# count items on list
mentions_count = pd.Series(mentions).value_counts()
mentions_countvivicanosaok       1
PatoBullrich       1
JonatanViale       1
MalenaGalmarini    1
edufeiok           1
Kicillofok         1
minsaurralde       1
LANACION           1
JMilei             1
c0o0ni             1
Pontifex_es        1
Name: count, dtype: int64
# load the spacy model for Spanish
nlp = spacy.load("es_core_news_sm")
# load stop words for Spanish
STOP_WORDS = nlp.Defaults.stop_words
# Function to filter stop words
def filter_stopwords(text):
    # lower text
    doc = nlp(text.lower())
    # filter tokens
    tokens = [
        token.text
        for token in doc
        if not token.is_stop and token.text not in STOP_WORDS and token.is_alpha
    ]
    return " ".join(tokens)
# apply function to dataframe column
df_attacks["text_pre"] = df_attacks["text"].apply(filter_stopwords)
# count items on column
token_counts = df_attacks["text_pre"].str.split(expand=True).stack().value_counts()[:20]
token_countslechoso       136
gordito        90
gordo          68
vos            53
sos            46
vas            45
q              30
leche          22
rodilleras     16
pija           15
ensobrado      15
milei          15
pelotudo       15
viejo          14
macri          12
cara           12
chupa          11
mierda         10
puta            9
tomar           9
Name: count, dtype: int64